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The classical equations of reaction kinetics, relating the velocity of 
reaction to the concentrations of the reacting substances, were originally 
developed to describe the behavior of reactions occurring in liquid systems. 
In such systems the volume remains approximately constant. In the 
hands of van't Hoff, Bodenstein and others, the same equations were found 
to be applicable to gaseous reactions occurring at constant volume. In 
this period the kinetics of gas reactions were almost invariably studied by 
the so-called "static" method, in which the volume is maintained constant, 
and the progress of reaction is followed by noting the change in pressure. 

In recent years there has been an increasing tendency to employ the flow 
method, which consists in streaming the gases through the reaction space, 
and determining the extent of reaction by analysis of the exit gases. 
This method differs essentially from the static method in that the reaction 
takes place at constant pressure. Nevertheless, it has been a common 
practice to apply to results obtained by this method the kinetic equations 
which hold for reactions at constant volume. 

It is the object of the present paper to point out that kinetic equations 
for reactions at constant volume are not necessarily applicable to reactions 
at constant pressure, and to indicate how the latter are to be correctly 
treated. 

Homogeneous, Unimolecular Gas Reactions.—Reactions of the first 
order are defined in two different ways, either (1) as those in which a 
constant fraction of the material reacts in unit time, or (2) as those in 
which the rate of change of concentration is proportional to the concen­
tration of reacting substance. Accordingly, if wA, wB denote the number 
of moles of substances A and B, respectively, present in volume V, and 
cA, C3 their respective concentrations, the rate of the reaction, A —> vB, 
could be expressed in either of the following ways 

" "dT " kinx ( 1 ) 

- ^ f = ^cx = hnJV (2) 

If the reaction is carried out at constant volume, dcA( = d(nA/F)) = 
(l/F)d«A» and the two expressions are equivalent. For reactions con­
ducted at constant pressure, however, the volume does not remain con­
stant (except in the special case where v = 1). Under this condition, 
therefore, Equations 1 and 2 are not equivalent. The difference between 
them can best be seen in their integrated forms 
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kit = In n'JnK ( la ) 
n V 

ht = In c'jcK = In - . T 7 - , (2a) 
»A V 

where the primes represent the conditions at zero time. If the gas con­
sists of pure A at the start, V/ V varies from unity at t = 0, to v at / = co. 
From this it can readily be shown that &2 = vk\ at / = 0, while at / = » , 
k-i = ki. Hence if either ki or &2 is actually constant, the other will vary 
by a factor of v during the course of the reaction. 

While it is clear that these equations can not both be correct, they 
have been employed indiscriminately in the literature. Thus, for example, 
of three recent papers by different authors dealing with the homogeneous, 
unimolecular decomposition of hydrocarbons at constant pressure, one 
employs rate constants calculated by means of Equation 1 and two by 
means of Equation 2. 

The generally accepted theory of homogeneous, unimolecular reactions 
leaves no doubt that Equation 1 rather than Equation 2 is the correct 
form. Of the total number of molecules of reactant, »A, a given fraction 
are in the necessary activated state, and of this fraction a further fraction 
suffers reaction in unit time independent of the concentration.1 

Homogeneous, Unimolecular Reactions in Flow Systems.—There 
are two methods by which reactions may be carried out at constant pres­
sure, (1) the "flow" method, and (2) a method involving a closed system of 
variable volume. Equation la, obtained by direct integration of Equation 
1, is .obviously in suitable form for application to Method 2. On the other 
hand, its utility in the flow method is limited by the fact that the "time of 
contact" is not a directly measurable quantity. If the rate of flow of the 
entering gases is maintained constant, the time of contact t depends on the 
extent to which the volume changes during the progress of the reaction. 

Let the volume of the reaction space be Vb, and let V represent the 
volume of gas, at the temperature and pressure of the reaction space, 
entering per unit time. If there were no change in volume due to the 
reaction, the time of contact would be simply Vb/V. However, in the 
reaction A —>• vB, the volume changes from V = (RT/P)nA to 
V = (RT/P)(nA + nB) = (RT/P)(m'A - [v - 1]»A) = V'(v- [v-l]nJn'A), 
where nA is the number of moles of A entering the reaction space per 
second, and nA is the number passing any given point per second. If, under 
these conditions, we treat Vb as a variable, we may write 

IZs = v = v\v - [„ - i]«A/«D 

Substitution of At from this equation in Equation 1 gives 
1 Equation 1 probably applies strictly only to an ideal gas. In real gases it would 

seem that the fraction of the molecules in an activated state cannot be independent of the 
concentration, and it is further possible that the fraction of the activated molecules 
which decompose in unit time may also depend to some extent on concentration. 
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-V L - [„ _ i] ^ d«A = hnAdVb 

On integration, 

KVJV' = , l n ^ - ( „ - l ) ( l - »A 
«A \ » A / 

where Fb is the volume of the whole reaction space, out of which nA moles 
of A issues per second. If F represents the fraction of A which reacts, then 

A17b/V" = v In j-l-p - (* - I)J? (3) 

In treating reactions in flow systems it has been the common practice 
hitherto to calculate the time of contact as the ratio of the volume of the 
reaction space to the average of the entering and exit rates of flow.2 While 
this procedure gives a fair approximation when the fractional conversion 
is not too great, the simplicity and exactness of Equation 3 would seem to 
make approximations needless. 

First Order, Catalyzed Reactions.—When we turn to first order gas 
reactions which are catalyzed by a solid surface, we find that when the 
volume varies neither Equation 1 nor Equation 2 is correct. This fact 
will be apparent from the following derivation. 

We may assume that the reaction is of the first order either because (1) 
the velocity is determined by the rate of collision of (activated) molecules 
of reactant with the surface, or because (2) a small portion of the surface 
is occupied by adsorbed molecules, a given fraction of which are trans­
formed in unit time. In Case (1) the rate of reaction, that is, the number 
of moles of reactant disappearing in unit time, is a given fraction of the 
number colliding with the surface, and this in turn is equal to (i>/4)ScA, 
where 5 is the surface area, v is the average velocity of the molecules, and 
cA is their concentration. Thus, at a given temperature 

-^f = h-\ Scx^kSnJV (4) 

It may be noted that this equation is dimensionally correct, since fa is 
dimensionless and both sides reduce to number per unit time. 

In Case (2) the rate is proportional to the amount of gas adsorbed, and 
the latter is also determined by S and the concentration in the gas phase. 
Thus for small adsorption the result is the same as for Case (1). The 
principle is, of course, the same whether the adsorption is small or large, 
but in the latter event the order of reaction will differ from the first, and 
we should have to write 

_ ^HA - fr's °A 

dt 1 + OCA 

where a is the constant of the Langmuir adsorption equation." 
2 Pease [THIS JOURNAL, Sl, 3470 (1929)] has, however, already elaborated the 

proper treatment of time of contact, and has applied it to the bimolecular polymerization 
of acetylene. 
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To integrate Equation 4 it is necessary to express V as a function of nA. 
Let us assume that the reaction is A —> vB, and that the gas entering 
the reaction space per second occupies the volume V, and is composed 
of n'A moles of A and no B. Then, as before, V= V'(v — [v — l]nA/nA) 
and dt = (1/ V)dVb, where Vh now represents the free space in the reaction 
tube not occupied by the catalyst. With these values of dt and V sub­
stituted in Equation 4, integration gives 

kSVh j «A „ , 
= vl ill — — Zv\ I ) ( l _ s ) + ^ c - I - ? ) 

Because of the somewhat complex nature of this exact expression, it is 
often preferable in practice to substitute an approximate equation previ­
ously suggested,3 which may be written in the form 

- ^ T = ^ 
At 

where cA is the average concentration of A in the entering and exit gases, 
and At is Vh divided by the average rate of flow. This equation neces­
sarily fails at high percentage conversions, but ordinarily involves only 
a negligible error for conversions up to at least 50%. 

Bimolecular Reactions.—The treatment of homogeneous, bimolecular 
gas reactions at constant pressure is complicated to some extent because 
of the fact that the rate of collision in a gas whose volume is changing 
does not appear to have been studied. The correct form of velocity 
equation may readily be obtained, however, by considering a homogeneous, 
reversible reaction which is unimolecular in one direction and bimolecular 
in the other. Thus, in the reaction A 7"*" 25, the rate to the right is 

d M A - b « 
~ "HT " hnk 

If we assume that the rate to the left is given by the expression 

^ j = hVcl (5) 

then, at equilibrium where the two rates are equal 
kittA = kiVc%, or 4 / c A = kjki = K 

where K is the equilibrium constant. Since, as may readily be shown, 
the usual ways of writing the bimolecular velocity equation d'o not give 
this necessary result, it may be assumed that Equation 5 is correct. 

In the case of a catalyzed, bimolecular reaction, it may be shown by 
reasoning exactly analogous to that used in the corresponding unimolecular 
case that Equation 5 has the proper form. The equation can readily be 
applied by expressing nA, V and dt in terms of «B, Vh and the initial 
conditions, followed by integration. In practice, however, if the per­
centage conversion is not too great, it will usually be sufficient to employ 
the approximation 

3 Benton, Ind. Eng. Chem., 19, 494 (1927). 
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where V and cB are the average volume and the average concentration of B, 
based on the entering and exit gases. 
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These measurements upon compounds containing two dipoles separated 
by a carbon chain of varying length were undertaken with the object of 
studying the effect of the carbon chain upon the positions of the dipoles 
relative to one another and thus of extending our knowledge of the shape 
and behavior of the chain. The bromide doublets were used as being 
simple dipoles obtainable in compounds with chains of different length. 
Subsequent measurements have been made upon the diethyl esters of di-
carboxylic acids1 and upon the glycols,2 in both of which classes of com­
pounds the dipoles are more complex. 

Apparatus 

The dielectric constants of the solutions of the substances under in­
vestigation have been measured with a capacity bridge, part of which was 
presented by the Bell Telephone Laboratories. This part consisted of two 
fixed resistance arms with small adjustable resistances and capacities for 
balancing small inequalities and shielded in-put and out-put transformers, 
the whole mounted in a case with the parts carefully shielded. The other 
two arms of the bridge consisted of two condensers with series resistances 
as used previously in this Laboratory.3 The source of current was a 
Western Electric Company variable oscillator, which was operated at a 
frequency of 50,000 cycles in these measurements. The balance of the 
bridge was obtained by passing the current through a six-tube amplifier 
with a detector and a multimeter, adjustable to read microamperes, as null 
instrument. The condenser in which the liquid was measured consisted of 
concentric gold-plated cylinders fitting closely into a small glass vessel 
similar to that used in earlier measurements.4 The densities of the liquids 
were determined with a pycnometer of the type previously employed5 and 

1 Smyth and Walls, T H I S JOURNAL, 53, 527 (1931). 
2 Smyth and Walls, ibid., 53, 2115 (1931). 
3 Smyth, Morgan and Boyce, ibid., 50, 1536 (1928). 
4 Smyth and Stoops, ibid., 51, 3312 (1929). 
5 Smyth and Morgan, ibid., 50, 1547 (1928). 


